
2/6/12 3:23 PMGPU Gems 3 - Chapter 28. Practical Post-Process Depth of Field

Page 1 of 23http://http.developer.nvidia.com/GPUGems3/gpugems3_ch28.html

GPU Gems 3

GPU Gems 3 is now available for free online!

Please visit our Recent Documents page to see all the latest whitepa-
pers and conference presentations that can help you with your
projects.

You can also subscribe to our Developer News Feed to get notifications of new mater-
ial on the site.

Chapter 28. Practical Post-Process Depth of Field

Earl Hammon, Jr.
Infinity Ward

28.1 Introduction

In this chapter we describe a depth-of-field (DoF) algorithm particularly suited for
first-person games. At Infinity Ward, we pride ourselves on immersing players in a
rich cinematic experience. Consistent with this goal, we developed a technique for
Call of Duty 4: Modern Warfare that provides depth of field's key qualitative features in
both the foreground and the background with minimal impact on total system per-
formance or engine architecture. Our technique requires Shader Model 2.0 hardware.

28.2 Related Work

28.2.1 Overview

A rich body of work, dating back to Potmesil and Chakravarty 1981, exists for adding
depth of field to computer-generated images. Demers (2004), in the original GPU
Gems book, divides depth-of-field techniques into these five classes:

Ray-tracing techniques, which send rays from over the whole area of the lens
Accumulation-buffer techniques, which blend images from multiple pinhole cam-

2/6/12 3:23 PMGPU Gems 3 - Chapter 28. Practical Post-Process Depth of Field

Page 2 of 23http://http.developer.nvidia.com/GPUGems3/gpugems3_ch28.html

eras
Compositing techniques, which merge multiple layers with different focus levels
Forward-mapped z-buffer techniques, which scatter a pixel's color to its neighbors
Reverse-mapped z-buffer techniques, which gather color samples from neighboring
pixels

Ray tracing, accumulation buffer, and compositing can be considered "composition"
techniques. Like Demers, we prefer z-buffer techniques (forward mapped or reverse
mapped). As image-based algorithms, they are particularly suited to graphics hard-
ware. Furthermore, z-buffer information is useful in other rendering effects, such as
soft particles, because it amortizes the cost of generating a depth image. On the other
hand, composition techniques are limited because they cannot be added easily to an
existing graphics engine.

Z-buffer techniques are often extended to operate on a set of independent layers in-
stead of on a single image. This process can reduce artifacts from incorrect bleeding
and give proper visibility behind nearby objects that are blurred to the point of
translucency.

28.2.2 Specific Techniques

Mulder and van Liere 2000 includes a fast DoF technique that splits the original im-
age into those pixels in front of the focal plane and those behind. They build a set of
blurred images from both sets, halving the resolution each time. Finally, they com-
bine each of these blurred levels with the original scene by drawing a textured plane
at the appropriate distance from the camera with depth testing enabled. Our tech-
nique also blends blurred images with the frame buffer, but we generate them in few-
er passes and apply them to the final image with a single full-screen colored quad.
We achieve higher efficiency by accepting more artifacts from blurring across depths.

Demers (2004) describes a gathering z-buffer technique that uses each pixel's circle of
confusion (CoC) to blend between several downsampled versions of the original im-
age. Our technique most closely matches this, but we also consider neighbors when
we calculate a pixel's CoC, so that our technique also blurs foreground objects.

Scheuermann (2004) describes another gathering z-buffer technique that uses a Pois-
son filter to sample the neighborhood of a pixel based on its own CoC. He also uses
the depth of the neighboring pixels to prevent foreground objects from bleeding onto

2/6/12 3:23 PMGPU Gems 3 - Chapter 28. Practical Post-Process Depth of Field

Page 3 of 23http://http.developer.nvidia.com/GPUGems3/gpugems3_ch28.html

unfocused background objects. This technique works well for blurring distant objects,
but it doesn't extend well to blurring the foreground.

K ivánek et al. (2003) present a scattering z-buffer technique, using objects com-
posed of point sprites that are scaled based on the point's CoC. They improve perfor-
mance by using lower levels of detail for objects that are more out of focus. This is a
good technique for point-sprite models. This could be extended to work as a post-
process by treating each pixel of the screen as a point sprite, but doing so is computa-
tionally impractical.

Kass et al. (2006) achieve the blurring seen in DoF by modeling it as heat diffusion,
where the size of the circle of confusion corresponds to the "heat" of the pixel. They
further divide the scene into layers to draw objects behind an opaque foreground ob-
ject that has become transparent because it was small relative to the camera aperture.
Their technique achieves high quality with interactive performance in a prerendered
scene, letting artists manipulate the DoF parameters used later in an offline render.
However, the technique is too computationally intensive for dynamic scenes that
must be rendered every frame.

28.3 Depth of Field

As the theoretical basis for our technique, we start from a virtual lens that focuses in-
coming light on an imaging plane. This lens is characterized by the focal length and
the aperture. The focal length is the distance an imaging plane needs to be from the
lens for parallel rays to map to a single point. The aperture is simply the diameter of
the lens receiving light. The thin lens equation relates an object's distance from the
lens u to the distance from the lens at which it is in focus v and the focal length of the
lens f:

The geometry of a simple lens is shown in Figure 28-1. The aperture ra-
dius of the lens is d. The point uo is in focus for the imaging plane,

which is at vo . A point at un or uf would be in focus if the imaging plane were at vf or
vn , respectively, but both map to a circle with diameter c when the imaging plane is
at vo . This circle is known as the circle of confusion. The depth of field for a camera is
the range of values for which the CoC is sufficiently small.

2/6/12 3:23 PMGPU Gems 3 - Chapter 28. Practical Post-Process Depth of Field

Page 4 of 23http://http.developer.nvidia.com/GPUGems3/gpugems3_ch28.html

Figure 28-1 The Circle of Confusion for a Thin Lens

Using similar triangles, we find that

So, for any point in space p that is focused at vp , we
can specify its circle of confusion by

We can solve the thin lens approximation for v and substitute it
into this equation to find the diameter of the circle of confusion
for any point in space as a function of the camera's physical

properties, as in Equation 1:

Equation 1

We are primarily concerned with the qualitative
properties of this equation to convey a sense of limited depth of field. Specifically, we
note the following:

A "pinhole" camera model sets d to 0. In this case, c is always 0, so every point in
space is always in focus. Any larger value of d will cause parts of the image to be
out of focus. All real lenses, including the human eye, have d greater than 0.
There is an upper bound on the diameter of the circle of confusion for points be-
yond the focal point.
There is no upper bound on the circle of confusion closer than the focal point.
The circle of confusion increases much more rapidly in the foreground than in

2/6/12 3:23 PMGPU Gems 3 - Chapter 28. Practical Post-Process Depth of Field

Page 5 of 23http://http.developer.nvidia.com/GPUGems3/gpugems3_ch28.html

the background.

28.4 Evolution of the Algorithm

Clearly, blurring objects near the camera is crucial to any convincing depth-of-field
algorithm. Our algorithm evolved through various attempts at convincingly blurring
nearby objects.

28.4.1 Initial Stochastic Approach

We started from the technique described in Scheuermann 2004. We calculated each
pixel's circle of confusion independently and used that to scale a circular Poisson dis-
tribution of samples from the original image. Like Scheuermann, we also read the
depth for each sample point, rejecting those too close to the camera.

This provides a very convincing blur for objects beyond the focal plane. Unfortunate-
ly, objects in front of the focal plane still have sharp silhouettes. Nearby objects do
not appear out of focus—they just seem to have low-quality textures. This poor tex-
ture detracts from the player's experience, so it would be better to restrict ourselves
to blurring distant objects than to use this technique for blurring the foreground.

This technique for blurring foreground objects is represented in the top right image
of Figure 28-2. Note that the character's silhouette is unchanged from the reference
image. This screenshot used 33 sample positions for 66 texture lookups per pixel, but
it still suffers from ringing artifacts, particularly around the chin strap, the collar, and
the eyes. Contrast this with the soft silhouette and smooth blur in the bottom right
image.

2/6/12 3:23 PMGPU Gems 3 - Chapter 28. Practical Post-Process Depth of Field

Page 6 of 23http://http.developer.nvidia.com/GPUGems3/gpugems3_ch28.html

Figure 28-2 A Character Rendered with Different Techniques for DoF

28.4.2 The Scatter-as-Gather Approach

We considered the problem of blurring the background solved at this point, so we di-
rected our efforts to bleeding blurry foreground objects past their silhouettes. Our
first algorithm did a gather from neighboring pixels, essentially assuming that each
neighbor had a CoC that was the same as the current one. Logically, we would prefer
each pixel to smear itself over its neighbors based on its own circle of confusion.

This selectively sized smearing is a scattering operation, which doesn't map well to
modern GPUs. We inverted this scattering operation into a gather operation by
searching the neighborhood of each pixel for pixels that scattered onto it. We again
sampled with a Poisson distribution, but because we were searching for the neighbor-
ing pixels that bleed onto the center pixel, we always had to use the maximum circle
of confusion.

We found the CoC for each neighboring sample and calculated a weighted sum of
only those samples that overlapped this pixel. Each sample's weight was inversely
proportional to its area. We normalized the final color value by dividing by the sum

2/6/12 3:23 PMGPU Gems 3 - Chapter 28. Practical Post-Process Depth of Field

Page 7 of 23http://http.developer.nvidia.com/GPUGems3/gpugems3_ch28.html

of all used weights.

Unfortunately, this technique proved computationally and visually inadequate. We
noticed that using less than about one-fourth of the pixels in the largest possible circle
of confusion resulted in ugly ringing artifacts. This calculates to 24 sample points
with 2 texture reads each for a maximum circle of confusion of only 5 pixels away
(the diameter would be 11 pixels counting the center point). This cost could possibly
be mitigated by using information about known neighbors to cull samples intelligent-
ly.

However, we abandoned this approach because it retained objectionable discontinu-
ities between nearby unfocused pixels and more-distant focused pixels. To under-
stand why this occurred, consider an edge between red source pixels with a large
CoC and blue source pixels in focus. In the target image, the red pixels will have af-
fected the blue pixels, but not vice versa. The unfocused red object will have a sharp
silhouette against a purple background that fades to blue, instead of the continuous
red-to-purple-to-blue transition we'd expect.

Two more problems with this method lead to the ugly behavior. First, the weight of
each pixel should go smoothly to zero at the perimeter of the circle; without this, the
output image will always have discontinuities where the blur radius changes. Sec-
ond, the pixels cannot be combined using a simple normalized sum of their weights.
To get the desired behavior, the contributing pixels need to be iterated from back to
front, where this iteration's output color is a lerp from the previous iteration's output
color to the current source pixel's color, based on the current source pixel's contribu-
tion weight. These two changes make this technique equivalent to rendering sorted
depth sprites for each pixel with diameters equal to the pixel's CoC, essentially a
post-process version of K ivánek et al. 2003. Unfortunately, they also make the pixel
shader even more prohibitively expensive. Even with these fixes, the shader could
not properly draw the scene behind any foreground objects that are blurred to trans-
parency.

The bottom left image of Figure 28-2 was generated with this technique, using 64
sample points with a 12-pixel radius. The extra samples give this a better blur in the
character's interior than the stochastic approach. However, 64 sample points are still
too few for this blur radius, which leads to the ringing artifacts that can be seen on
the antenna, neck, and helmet. Note that the silhouette still forms a harsh edge

2/6/12 3:23 PMGPU Gems 3 - Chapter 28. Practical Post-Process Depth of Field

Page 8 of 23http://http.developer.nvidia.com/GPUGems3/gpugems3_ch28.html

against the background; more samples wouldn't eliminate this.

28.4.3 The Blur Approach

At Infinity Ward we prioritize a quality user experience over an accurate simulation.
That's why we abandoned physically based approaches when applying the circle of
confusion for nearby objects in a continuous fashion. Instead, we decided to eliminate
all discontinuities between focused objects and the unfocused foreground by using
brute force, blurring them out of existence. The bottom right image in Figure 28-2
compares this technique to the previous approaches. The blur approach clearly has
the best image quality, but it is also the fastest.

We apply a full-screen pass that calculates the radius of the circle of confusion for
each foreground pixel into a render target. Pixels that are in focus or in the back-
ground use a CoC of zero. We then blur the CoC image to eliminate any edges. We
use a Gaussian blur because it is computationally efficient and gives satisfactory re-
sults. We also downsample the CoC image to one-fourth the resolution along each
axis as an optimization, so that the Gaussian blur affects only one-sixteenth of the to-
tal pixels in the frame.

This alone does not give the desired results for the silhouette of an unfocused object.
If the foreground object is maximally blurred but the object behind it is not blurred at
all, both objects will be approximately 50 percent blurred at their boundary. The fore-
ground object should be 100 percent blurred along this edge. This does not look as
bad as the previous discontinuities; however, it still looks odd when the blurriness of
an edge on a foreground object varies based on the object behind it.

To fix this, we sized certain pixels—those located on either side of an edge between
CoCs that had differing sizes—to always use the greater of the two diameters. How-
ever, a pixel has many neighbors, and we would rather avoid doing a search of all
neighboring pixels. Instead, we only calculate each pixel's CoC and then use the
blurred CoC image to estimate its neighboring pixel's CoC.

Consider an edge between two objects, each with uniform yet distinct circles of con-
fusion having diameters D 0 and D 1. Clearly, in this case the blurred diameter DB is
given by

DB = (D 0 + D 1).

2/6/12 3:23 PMGPU Gems 3 - Chapter 28. Practical Post-Process Depth of Field

Page 9 of 23http://http.developer.nvidia.com/GPUGems3/gpugems3_ch28.html

DB = (D 0 + D 1).

This equation also accurately gives the blurred diameter when the gradient of the di-
ameter is the same on both sides of the edge, and for some other coincidental cases.
We can get the current pixel's original diameter D 0 and blurred diameter DB in two
texture lookups. From these, we estimate D 1 by solving the previous equation:

D 1 2DB - D 0

Accordingly, we define our new diameter for the circle of confusion D by the equa-
tion

D = max(D 0, 2DB - D 0) = 2 max(D 0, DB) - D 0.

Let D 1 be the larger circle of confusion. This equation will transition smoothly from a
diameter of D 1 at the boundary between the two regions to D 0 at the limits of the
blur radius inside region 0. This is exactly what we want.

The maximum function is continuous when its inputs are continuous. The D 0 input
is not actually continuous, because it is the unblurred diameter for this pixel's circle
of confusion. This function was chosen to be continuous along certain straight edges.
Most straight-edge boundaries match these assumptions quite well within the blur
radius. However, there are some objectionable discontinuities, particularly at 90-
degree corners, so we apply one last small blur to fix this issue.

Figures 28-3 and 28-4 illustrate this process applied to a sample image. Each row is a
particular sample image. The first column is the unprocessed image, and the second
column is the image with the filter applied without the final blur. The third column is
the final blurred result. Pure white in the input image represents the maximum circle
of confusion; pixels that are black are in focus.

2/6/12 3:23 PMGPU Gems 3 - Chapter 28. Practical Post-Process Depth of Field

Page 10 of 23http://http.developer.nvidia.com/GPUGems3/gpugems3_ch28.html

Figure 28-3 Foreground Circle of Confusion Radius Calculation Applied to Some Test
Images

Figure 28-4 Zoom on the Top Left Corner of the "W" in

The first image is a simple black-and-white scene. Visually, these letters are floating
in space very near the camera. The filter works well overall, but there are still some
sharp edges at the corners of the letters, particularly in the uppercase "I". Blurring the
image gets rid of the hard edge. It still leaves a gradient that is steeper than ideal, but
it is good enough for our purposes.

The second row applies a small Gaussian blur to the sample image of the first row be-
fore applying the filter. This corresponds to looking at an object at a glancing angle.
This results in a clear outline around the original image after it has been filtered. The
final blur significantly dampens this artifact, but it doesn't completely fix it.

2/6/12 3:23 PMGPU Gems 3 - Chapter 28. Practical Post-Process Depth of Field

Page 11 of 23http://http.developer.nvidia.com/GPUGems3/gpugems3_ch28.html

The final row applies a gradient to the original image. This corresponds to the typical
case of an object that gradually recedes into the distance. The radius for the circle of
confusion is overestimated in "valleys" and underestimated in "peaks," but it is con-
tinuous and there are none of the really objectionable artifacts from the second row.
Again, the final blur dampens this artifact. Note that the gradient within the text is
preserved.

28.5 The Complete Algorithm

Our completed algorithm consists of four stages:

1. Downsample the CoC for the foreground objects.
2. Blur the near CoC image.
3. Calculate the actual foreground CoC from the blurred and unblurred images.
4. Apply the foreground and background CoC image in one last full-screen pass

that applies a variable-width blur.

28.5.1 Depth Information

Our algorithm is implemented using DirectX 9 hardware, which does not allow read-
ing a depth buffer as a texture. We get around this limitation by binding a 32-bit
floating-point color buffer during our depth pre-pass. Although we do not require
full 32-bit precision, we picked that format because it is the least common denomina-
tor across all of our target hardware.

The pixel shader during depth pre-pass merely passes the world-space distance from
the vertex shader through to the render target. In the pixel shader, we kill transparent
pixels for 1-bit alpha textures by using the HLSL clip() intrinsic function.

In calling our technique a "pure post-process that can easily be plugged into an exist-
ing engine," we assume that the engine already generates this information. Our per-
formance impact analysis also assumes that this information is already available. Our
technique requires more than just applying post-processing modifications to a ren-
dering engine if this assumption is invalid.

28.5.2 Variable-Width Blur

We need a fast variable-width blur to apply the circle of confusion to the scene. We

2/6/12 3:23 PMGPU Gems 3 - Chapter 28. Practical Post-Process Depth of Field

Page 12 of 23http://http.developer.nvidia.com/GPUGems3/gpugems3_ch28.html

We need a fast variable-width blur to apply the circle of confusion to the scene. We
could use a Poisson disk as in the original stochastic approach based on Scheuer-
mann 2004. However, we generate the blur by approaching it differently. We consid-
er that each pixel has a function that gives it its color based on the CoC diameter. We
then approximate this function using a piecewise linear curve between three different
blur radii and the original unblurred sample.

The two larger blur radii are calculated in the RGB channels at the same time the
downsampled CoC is calculated in the alpha channel. The smallest blur radius is
solved using five texture lookups, to average 17 pixels in a 5x5 grid, using the pattern
in Figure 28-5.

Figure 28-5 Sample Positions for Small Blur

Note that the center sample of this pattern reuses the tex-
ture lookup for the unblurred original pixel color.

This small blur is crucial for closely approximating the ac-
tual blur color. Without it, the image does not appear to
blur continuously, but instead it appears to cross-fade with
a blurred version of itself. We also found that a simple lin-

ear interpolation gave better results than a higher-polynomial spline because the
splines tended to extrapolate colors for some pixels.

28.5.3 Circle of Confusion Radius

We are given the distance of each pixel to the camera in a depth texture. We see from
Equation 1 that an accurate model of the radius for the circle of confusion can be cal-
culated from this using only a reciprocal and a multiply-add instruction, with the en-
gine providing suitable scale and bias constants.

However, we again take advantage of the freedom in computer simulation to forego
physical plausibility in favor of artistic control. Artistically, we want some depth
range to be in focus, with specific amounts of blur before and beyond it. It is unclear
how to convert this into physical camera dimensions. The most intuitive way to edit
this is by using a piecewise linear curve, as in Figure 28-6. The artists specify the near
and far blur radii and the start and end distances for each of the three regions. We
disable blurring for any region that has degenerate values, so artists can blur only the
foreground or only the background if they wish.

2/6/12 3:23 PMGPU Gems 3 - Chapter 28. Practical Post-Process Depth of Field

Page 13 of 23http://http.developer.nvidia.com/GPUGems3/gpugems3_ch28.html

Figure 28-6 Graph of the Circle of Confusion

In practice, we pick a world-near-end distance and a world-far-start distance that enclose
everything that the player is likely to find of interest. We then set the world-near-start
distance based on the world-near-end distance. Similarly, we set the world far-end dis-
tance based on the world-far-start distance.

28.5.4 First-Person Weapon Considerations

Infinity Ward develops first-person shooter games. The player's weapon (view mod-
el) is very important in these games because it is always in view and it is the primary
way that the player interacts with the environment. DoF settings that looked good on
the view model appeared to have no effect on the environment, while DoF settings
that looked good on the nearby environment blurred the player's weapon excessive-
ly.

Our solution was to provide separate settings for the blur on the world and the play-
er's view model. This makes no physical sense, but it provides a better experience for
the player—perhaps because it properly conveys the effects of DoF whether the play-
er is focusing on the important parts of the weapon or on the action in the environ-
ment. Each weapon configures its own near and far distances, with separate values
used when the shooter aims with the weapon and when he or she holds it at the hip.

For this technique to work, we must know whether each pixel belongs to the view
model or to the world. Our depth information is stored in a 32-bit floating-point ren-
der target. Using negative depths proved the most convenient way to get this bit of
information. The normal lookup just requires a free absolute value modifier. This also

2/6/12 3:23 PMGPU Gems 3 - Chapter 28. Practical Post-Process Depth of Field

Page 14 of 23http://http.developer.nvidia.com/GPUGems3/gpugems3_ch28.html

leads to an efficient implementation for picking the near circle of confusion. We can
calculate the near CoC for 4 pixels concurrently using a single mad_sat instruction.
We calculate the near CoC for both the view model and the world in this way, and
then we pick the appropriate CoC for all 4 pixels with a single min instruction.

28.5.5 The Complete Shader Listing

Most of the passes of our algorithm in Listing 28-1 are used to generate the near circle
of confusion so that it is continuous and provides soft edges for foreground objects.
We also want a large Gaussian blur radius, so we share GPU computation to concur-
rently calculate the blurred version of the scene and the near circle of confusion.

We specify the large blur radius in pixels at a normalized 480p resolution so that it is
independent of actual screen resolution. However, the two small blurs are based on
the actual screen resolution. We experimentally determined that the 17-tap small blur
corresponds to a 1.4-pixel Gaussian blur at native resolution, and that the medium
blur corresponds to a 3.6-pixel Gaussian blur at native resolution.

Example 28-1. A Shader That Downsamples the Scene and Initializes the Near CoC

1. // These are set by the game engine.
2. // The render target size is one-quarter the scene rendering size.
3. sampler colorSampler;
4. sampler depthSampler;
5. const float2 dofEqWorld;
6. const float2 dofEqWeapon;
7. const float2 dofRowDelta; // float2(0, 0.25 / renderTargetHeight)
8. const float2 invRenderTargetSize;
9. const float4x4 worldViewProj;

10. struct PixelInput
11. {
12. float4 position : POSITION;
13. float2 tcColor0 : TEXCOORD0;
14. float2 tcColor1 : TEXCOORD1;
15. float2 tcDepth0 : TEXCOORD2;
16. float2 tcDepth1 : TEXCOORD3;
17. float2 tcDepth2 : TEXCOORD4;

2/6/12 3:23 PMGPU Gems 3 - Chapter 28. Practical Post-Process Depth of Field

Page 15 of 23http://http.developer.nvidia.com/GPUGems3/gpugems3_ch28.html

17. float2 tcDepth2 : TEXCOORD4;
18. float2 tcDepth3 : TEXCOORD5;
19. };
20. PixelInput DofDownVS(float4 pos : POSITION, float2 tc : TEXCOORD0)
21. {
22. PixelInput pixel;
23. pixel.position = mul(pos, worldViewProj);
24. pixel.tcColor0 = tc + float2(-1.0, -1.0) * invRenderTargetSize;
25. pixel.tcColor1 = tc + float2(+1.0, -1.0) * invRenderTargetSize;
26. pixel.tcDepth0 = tc + float2(-1.5, -1.5) * invRenderTargetSize;
27. pixel.tcDepth1 = tc + float2(-0.5, -1.5) * invRenderTargetSize;
28. pixel.tcDepth2 = tc + float2(+0.5, -1.5) * invRenderTargetSize;
29. pixel.tcDepth3 = tc + float2(+1.5, -1.5) * invRenderTargetSize;
30. return pixel;
31. }
32. half4 DofDownPS(const PixelInput pixel) : COLOR
33. {
34. half3 color;
35. half maxCoc;
36. float4 depth;
37. half4 viewCoc;
38. half4 sceneCoc;
39. half4 curCoc;
40. half4 coc;
41. float2 rowOfs[4];
42. // "rowOfs" reduces how many moves PS2.0 uses to emulate swizzling.
43. rowOfs[0] = 0;
44. rowOfs[1] = dofRowDelta.xy;
45. rowOfs[2] = dofRowDelta.xy * 2;
46. rowOfs[3] = dofRowDelta.xy * 3;
47. // Use bilinear filtering to average 4 color samples for free.
48. color = 0;
49. color += tex2D(colorSampler, pixel.tcColor0.xy + rowOfs[0]).rgb;
50. color += tex2D(colorSampler, pixel.tcColor1.xy + rowOfs[0]).rgb;
51. color += tex2D(colorSampler, pixel.tcColor0.xy + rowOfs[2]).rgb;
52. color += tex2D(colorSampler, pixel.tcColor1.xy + rowOfs[2]).rgb;
53. color /= 4;

2/6/12 3:23 PMGPU Gems 3 - Chapter 28. Practical Post-Process Depth of Field

Page 16 of 23http://http.developer.nvidia.com/GPUGems3/gpugems3_ch28.html

54. // Process 4 samples at a time to use vector hardware efficiently.
55. // The CoC will be 1 if the depth is negative, so use "min" to pick
56. // between "sceneCoc" and "viewCoc".
57. depth[0] = tex2D(depthSampler, pixel.tcDepth0.xy + rowOfs[0]).r;
58. depth[1] = tex2D(depthSampler, pixel.tcDepth1.xy + rowOfs[0]).r;
59. depth[2] = tex2D(depthSampler, pixel.tcDepth2.xy + rowOfs[0]).r;
60. depth[3] = tex2D(depthSampler, pixel.tcDepth3.xy + rowOfs[0]).r;
61. viewCoc = saturate(dofEqWeapon.x * -depth + dofEqWeapon.y);
62. sceneCoc = saturate(dofEqWorld.x * depth + dofEqWorld.y);
63. curCoc = min(viewCoc, sceneCoc);
64. coc = curCoc;
65. depth[0] = tex2D(depthSampler, pixel.tcDepth0.xy + rowOfs[1]).r;
66. depth[1] = tex2D(depthSampler, pixel.tcDepth1.xy + rowOfs[1]).r;
67. depth[2] = tex2D(depthSampler, pixel.tcDepth2.xy + rowOfs[1]).r;
68. depth[3] = tex2D(depthSampler, pixel.tcDepth3.xy + rowOfs[1]).r;
69. viewCoc = saturate(dofEqWeapon.x * -depth + dofEqWeapon.y);
70. sceneCoc = saturate(dofEqWorld.x * depth + dofEqWorld.y);
71. curCoc = min(viewCoc, sceneCoc);
72. coc = max(coc, curCoc);
73. depth[0] = tex2D(depthSampler, pixel.tcDepth0.xy + rowOfs[2]).r;
74. depth[1] = tex2D(depthSampler, pixel.tcDepth1.xy + rowOfs[2]).r;
75. depth[2] = tex2D(depthSampler, pixel.tcDepth2.xy + rowOfs[2]).r;
76. depth[3] = tex2D(depthSampler, pixel.tcDepth3.xy + rowOfs[2]).r;
77. viewCoc = saturate(dofEqWeapon.x * -depth + dofEqWeapon.y);
78. sceneCoc = saturate(dofEqWorld.x * depth + dofEqWorld.y);
79. curCoc = min(viewCoc, sceneCoc);
80. coc = max(coc, curCoc);
81. depth[0] = tex2D(depthSampler, pixel.tcDepth0.xy + rowOfs[3]).r;
82. depth[1] = tex2D(depthSampler, pixel.tcDepth1.xy + rowOfs[3]).r;
83. depth[2] = tex2D(depthSampler, pixel.tcDepth2.xy + rowOfs[3]).r;
84. depth[3] = tex2D(depthSampler, pixel.tcDepth3.xy + rowOfs[3]).r;
85. viewCoc = saturate(dofEqWeapon.x * -depth + dofEqWeapon.y);
86. sceneCoc = saturate(dofEqWorld.x * depth + dofEqWorld.y);
87. curCoc = min(viewCoc, sceneCoc);
88. coc = max(coc, curCoc);
89. maxCoc = max(max(coc[0], coc[1]), max(coc[2], coc[3]));

2/6/12 3:23 PMGPU Gems 3 - Chapter 28. Practical Post-Process Depth of Field

Page 17 of 23http://http.developer.nvidia.com/GPUGems3/gpugems3_ch28.html

90. return half4(color, maxCoc);
91. }

We apply a Gaussian blur to the image generated by DofDownsample(). We do this
with code that automatically divides the blur radius into an optimal sequence of hori-
zontal and vertical filters that use bilinear filtering to read two samples at a time. Ad-
ditionally, we apply a single unseparated 2D pass when it will use no more texture
lookups than two separated 1D passes. In the 2D case, each texture lookup applies
four samples. Listing 28-2 shows the code.

Example 28-2. A Pixel Shader That Calculates the Actual Near CoC

In Listing 28-3 we apply a small 3x3 blur to the result of DofNearCoc() to smooth
out any discontinuities it introduced.

Example 28-3. This Shader Blurs the Near CoC and Downsampled Color Image
Once

1. // This vertex and pixel shader applies a 3 x 3 blur to the image in
2. // colorMapSampler, which is the same size as the render target.
3. // The sample weights are 1/16 in the corners, 2/16 on the edges,
4. // and 4/16 in the center.
5. sampler colorSampler; // Output of DofNearCoc()
6. float2 invRenderTargetSize;
7. struct PixelInput
8. {
9. float4 position : POSITION;

10. float4 texCoords : TEXCOORD0;
11. };
12. PixelInput SmallBlurVS(float4 position, float2 texCoords)
13. {
14. PixelInput pixel;
15. const float4 halfPixel = { -0.5, 0.5, -0.5, 0.5 };
16. pixel.position = Transform_ObjectToClip(position);
17. pixel.texCoords = texCoords.xxyy + halfPixel * invRenderTargetSize;
18. return pixel;
19. }

2/6/12 3:23 PMGPU Gems 3 - Chapter 28. Practical Post-Process Depth of Field

Page 18 of 23http://http.developer.nvidia.com/GPUGems3/gpugems3_ch28.html

19. }
20. float4 SmallBlurPS(const PixelInput pixel)
21. {
22. float4 color;
23. color = 0;
24. color += tex2D(colorSampler, pixel.texCoords.xz);
25. color += tex2D(colorSampler, pixel.texCoords.yz);
26. color += tex2D(colorSampler, pixel.texCoords.xw);
27. color += tex2D(colorSampler, pixel.texCoords.yw);
28. return color / 4;
29. }

Our last shader, in Listing 28-4, applies the variable-width blur to the screen. We use
a premultiplied alpha blend with the frame buffer to avoid actually looking up the
color sample under the current pixel. In the shader, we treat all color samples that we
actually read as having alpha equal to 1. Treating the unread center sample as having
color equal to 0 and alpha equal to 0 inside the shader gives the correct results on the
screen.

Example 28-4. This Pixel Shader Merges the Far CoC with the Near CoC and Ap-
plies It to the Screen

1. sampler colorSampler; // Original source image
2. sampler smallBlurSampler; // Output of SmallBlurPS()
3. sampler largeBlurSampler; // Blurred output of DofDownsample()
4. float2 invRenderTargetSize;
5. float4 dofLerpScale;
6. float4 dofLerpBias;
7. float3 dofEqFar;
8. float4 tex2Doffset(sampler s, float2 tc, float2 offset)
9. {

10. return tex2D(s, tc + offset * invRenderTargetSize);
11. }
12. half3 GetSmallBlurSample(float2 texCoords)
13. {
14. half3 sum;
15. const half weight = 4.0 / 17;
16. sum = 0; // Unblurred sample done by alpha blending

2/6/12 3:23 PMGPU Gems 3 - Chapter 28. Practical Post-Process Depth of Field

Page 19 of 23http://http.developer.nvidia.com/GPUGems3/gpugems3_ch28.html

16. sum = 0; // Unblurred sample done by alpha blending
17. sum += weight * tex2Doffset(colorSampler, tc, +0.5, -1.5).rgb;
18. sum += weight * tex2Doffset(colorSampler, tc, -1.5, -0.5).rgb;
19. sum += weight * tex2Doffset(colorSampler, tc, -0.5, +1.5).rgb;
20. sum += weight * tex2Doffset(colorSampler, tc, +1.5, +0.5).rgb;
21. return sum;
22. }
23. half4 InterpolateDof(half3 small, half3 med, half3 large, half t)
24. {
25. half4 weights;
26. half3 color;
27. half alpha;
28. // Efficiently calculate the cross-blend weights for each sample.
29. // Let the unblurred sample to small blur fade happen over distance
30. // d0, the small to medium blur over distance d1, and the medium to
31. // large blur over distance d2, where d0 + d1 + d2 = 1.
32. // dofLerpScale = float4(-1 / d0, -1 / d1, -1 / d2, 1 / d2);
33. // dofLerpBias = float4(1, (1 – d2) / d1, 1 / d2, (d2 – 1) / d2);
34. weights = saturate(t * dofLerpScale + dofLerpBias);
35. weights.yz = min(weights.yz, 1 - weights.xy);
36. // Unblurred sample with weight "weights.x" done by alpha blending
37. color = weights.y * small + weights.z * med + weights.w * large;
38. alpha = dot(weights.yzw, half3(16.0 / 17, 1.0, 1.0));
39. return half4(color, alpha);
40. }
41. half4 ApplyDepthOfField(const float2 texCoords)
42. {
43. half3 small;
44. half4 med;
45. half3 large;
46. half depth;
47. half nearCoc;
48. half farCoc;
49. half coc;
50. small = GetSmallBlurSample(texCoords);
51. med = tex2D(smallBlurSampler, texCoords);
52. large = tex2D(largeBlurSampler, texCoords).rgb;

2/6/12 3:23 PMGPU Gems 3 - Chapter 28. Practical Post-Process Depth of Field

Page 20 of 23http://http.developer.nvidia.com/GPUGems3/gpugems3_ch28.html

53. nearCoc = med.a;
54. depth = tex2D(depthSampler, texCoords).r;
55. if (depth > 1.0e6)
56. {
57. coc = nearCoc; // We don't want to blur the sky.
58. }
59. else
60. {
61. // dofEqFar.x and dofEqFar.y specify the linear ramp to convert
62. // to depth for the distant out-of-focus region.
63. // dofEqFar.z is the ratio of the far to the near blur radius.
64. farCoc = saturate(dofEqFar.x * depth + dofEqFar.y);
65. coc = max(nearCoc, farCoc * dofEqFar.z);
66. }
67. return InterpolateDof(small, med.rgb, large, coc);
68. }

28.6 Conclusion

Not much arithmetic is going on in these shaders, so their cost is dominated by the
texture lookups.

Generating the quarter-resolution image uses four color lookups and 16 depth
lookups for each target pixel in the quarter-resolution image, equaling 1.25
lookups per pixel in the original image.
The small radius blur adds another four lookups per pixel.
Applying the variable-width blur requires reading a depth and two precalculat-
ed blur levels, which adds up to three more lookups per pixel.
Getting the adjusted circle of confusion requires two texture lookups per pixel in
the quarter-resolution image, or 0.125 samples per pixel of the original image.
The small blur applied to the near CoC image uses another four texture lookups,
for another 0.25 samples per pixel in the original.

This equals 8.625 samples per pixel, not counting the variable number of samples
needed to apply the large Gaussian blur. Implemented as a separable filter, the blur
will typically use no more than two passes with eight texture lookups each, which

2/6/12 3:23 PMGPU Gems 3 - Chapter 28. Practical Post-Process Depth of Field

Page 21 of 23http://http.developer.nvidia.com/GPUGems3/gpugems3_ch28.html

will typically use no more than two passes with eight texture lookups each, which
gives 17 taps with bilinear filtering. This averages out to one sample per pixel in the
original image. The expected number of texture lookups per pixel is about 9.6.

Frame-buffer bandwidth is another consideration. This technique writes to the quar-
ter-resolution image once for the original downsample, and then another two times
(typically) for the large Gaussian blur. There are two more passes over the quarter-
resolution image—to apply Equation 1 and to blur its results slightly. Finally, each
pixel in the original image is written once to get the final output. This works out to
1.3125 writes for every pixel in the original image.

Similarly, there are six render target switches in this technique, again assuming only
two passes for the large Gaussian blur.

The measured performance cost was 1 to 1.5 milliseconds at 1024x768 on our tests
with a Radeon X1900 and GeForce 7900. The performance hit on next-generation con-
soles is similar. This is actually faster than the original implementation based on
Scheuermann 2004, presumably because it uses fewer than half as many texture
reads.

28.7 Limitations and Future Work

When you use our approach, focused objects will bleed onto unfocused background
objects. This is the least objectionable artifact with this technique and with post-
process DoF techniques in general. These artifacts could be reduced by taking addi-
tional depth samples for the 17-tap blur. This should be adequate because, as we
have seen, the background needs to use a smaller blur radius than the foreground.

The second artifact is inherent to the technique: You cannot increase the blur radius
for near objects so much that it becomes obvious that the technique is actually a blur
of the screen instead of a blur of the unfocused objects. Figure 28-7 is a worst-case ex-
ample of this problem, whereas Figure 28-8 shows a more typical situation. The cen-
ter image in Figure 28-8 shows a typical blur radius. The right image has twice that
blur radius; even the relatively large rock in the background has been smeared out of
existence. This becomes particularly objectionable as the camera moves, showing up
as a haze around the foreground object.

2/6/12 3:23 PMGPU Gems 3 - Chapter 28. Practical Post-Process Depth of Field

Page 22 of 23http://http.developer.nvidia.com/GPUGems3/gpugems3_ch28.html

Figure 28-7 The Worst-Case Scenario for Our Algorithm

Figure 28-8 If the Blur Radius Is Too Large, the Effect Breaks Down

The radius at which this happens depends on the size of the object that is out of focus
and the amount of detail in the geometry that should be in focus. Smaller objects that
are out of focus, and focused objects that have higher frequencies, require a smaller
maximum blur radius. This could be overcome by rendering the foreground objects
into a separate buffer so that the color information that gets blurred is only for the
foreground objects. This would require carefully handling missing pixels. It also
makes the technique more intrusive into the rendering pipeline.

Finally, we don't explicitly handle transparency. Transparent surfaces use the CoC of
the first opaque object behind them. To fix this, transparent objects could be drawn
after depth of field has been applied to all opaque geometry. They could be given an
impression of DoF by biasing the texture lookups toward lower mipmap levels. Parti-
cle effects may also benefit from slightly increasing the size of the particle as it goes
out of focus. Transparent objects that share edges with opaque objects, such as win-
dows, may still have some objectionable artifacts at the boundary. Again, this makes
the technique intrusive. We found that completely ignoring transparency works well
enough in most situations.

28.8 References

2/6/12 3:23 PMGPU Gems 3 - Chapter 28. Practical Post-Process Depth of Field

Page 23 of 23http://http.developer.nvidia.com/GPUGems3/gpugems3_ch28.html

28.8 References

Demers, Joe. 2004. "Depth of Field: A Survey of Techniques." In GPU Gems, edited by
Randima Fernando, pp. 375–390. Addison-Wesley.

Kass, Michael, Aaron Lefohn, and John Owens. 2006. "Interactive Depth of Field Us-
ing Simulated Diffusion on a GPU." Technical report. Pixar Animation Studios. Avail-
able online at http://graphics.pixar.com/DepthOfField/paper.pdf.

Kosloff, Todd Jerome, and Brian A. Barsky. 2007. "An Algorithm for Rendering Gen-
eralized Depth of Field Effects Based On Simulated Heat Diffusion." Technical Report
No. UCB/EECS-2007-19. Available online at
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-19.pdf.

K ivánek, Jaroslav, Ji í ára, and Kadi Bouatouch. 2003. "Fast Depth of Field Ren-
dering with Surface Splatting." Presentation at Computer Graphics International
2003. Available online at http://www.cgg.cvut.cz/~xkrivanj/papers/cgi2003/9-
3_krivanek_j.pdf.

Mulder, Jurriaan, and Robert van Liere. 2000. "Fast Perception-Based Depth of Field
Rendering." Available online at http://www.cwi.nl/~robertl/papers/2000/vrst/pa-
per.pdf.

Potmesil, Michael, and Indranil Chakravarty. 1981. "A Lens and Aperture Camera
Model for Synthetic Image Generation." In Proceedings of the 8th Annual Conference on
Computer Graphics and Interactive Techniques, pp. 297–305.

Scheuermann, Thorsten. 2004. "Advanced Depth of Field." Presentation at Game De-
velopers Conference 2004. Available online at
http://ati.amd.com/developer/gdc/Scheuermann_DepthOfField.pdf.

